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Abstract

Through statistical analysis and error propagation, we study the relationships between precision in
noise, gain, offset, and trim slope; and the parameters of repetition.  These parameters are number
of voltage steps in each scan, N; number of triggers per voltage point, Nevts; and number of scan
points, n.  The noise precision provides a minimum condition for the product N(Nevts - 1).  The
constraints on scan points given by offset and trim slope precisions are also given.

1. Introduction
To measure the parameters of gain, offset, noise, and trim slope of the ABCD3T chips

used in the ATLAS SCT detector, we use the method of threshold scanning [1].  Each threshold
scan produces an s-curve (Figure 1) with a transition width, σ, that characterizes the noise in the
system.  The mid-point of this transition is referred to as the 50% point.  By scanning at different
charge-injection points, we generate a response curve (Figure 2) for each channel of the chip.  In
this way we use the measured 50% points to extract the gain and offset.  This method is
necessitated by the use of binary readout in the ABCD chip design [2].

Figure 1.  Illustration of an s-curve from a threshold scan occupancy
histogram.

Figure 2.  Illustration of a response curve.  Fifty-percent point is
plotted as a function of trigger pulse height.  The gain and
offset of the channel are the slope and intercept,
respectively, of the best-fit line for the response curve.



3

Currently, we are generating 500 events (Nevts = 500) with N = 60 equal threshold voltage
steps between VLO = 50mV and VHI = 500mV (∆V = 7.5mV) to generate occupancy histograms for
the ABCD3T chips. We scan at n different pulse amplitudes.  The current default value of n is
four.  We would like to understand how the statistical uncertainties in noise, gain, offset depend on
these three repetition parameters.  We also use threshold scanning to extract the trim slope of each
channel [1], and will apply the present analysis to this quantity also.

2. Precision in Noise
The optimal values of the repetition parameters are constrained by the requisite level of

uncertainty in the noise, σ.  The transition we are measuring has the shape of a scaled
complementary error function, erfc().   We require an equation for the statistical error of this
distribution.  Our experimental constraints force us to consider only binned data, so the relation
must also account for smearing effects.

We obtain such a relation using the Monte Carlo technique.  This has two primary
advantages: first, it allows us to study the smearing effects mentioned above; second, it permits us
to understand and quantify the situation σ / ∆V << 1.  The latter is important here because the
current default values approach this regime.  The function δσ(σ, Nevts, ∆V) in the standard regime
obtained from this study is given here.  For a description of the Monte Carlo study, see Appendix
A.

We find the following relation for the usual case of σ / ∆V  >> 1:
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We can also express this in terms of the number of voltage steps, N:
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By imposing a bound, fσ, on fractional error in the measured values of noise, σ, we also
bound δ(σ).  We obtain the minimum condition
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3. Precision in Gain and Offset
The optimization must also consider constraints from the precision in gain and offset.  The

relationship between the gain, offset and 50% point is

(50% pt) = (Gain)∗Qinj + (Offset)
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The parameter Nevts enters the uncertainties in gain and offset through the uncertainty in the
50% point of the occupancy histogram.  Specifically, the uncertainty in the 50% point has the
following dependence on Nevts [3]:
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Here, σ is the width of the transition in the s-curve.  If we define ∆V = (VHI - VLO) / N, the
parameter r is defined as ∆V/σ, and µ(r)  is a documented function with values 0 < µ < 0.004 for r
< 2 [3].  Since r is well within this interval in our case, the second term is negligible, and by
substituting for r we obtain this relationship for the dependence of δ(50% pt) on Nevts:
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The gain and offset are derived from the best-fit line for the 50% points at the selected values of
Qinj.  We can calculate the statistical errors in the gain and offset using standard techniques of error
propagation [4].

For linear data with best-fit line y = mx + b, there is a coordinate system (x', y') such that
the errors on m' and b' are uncorrelated.  This is the frame in which m' = m, and the intercept b' is
the height of the line at <x>, the centroid value of x.

The uncertainty in the slope, m, of such a line is given by:
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In this relation and subsequently, n is the number of points available for the fit.

The uncertainty of the intercept in the primed coordinates is given below.
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The uncertainty in any y'-value at a given x'-value is given by the sum of the uncertainties in the
slope (weighted by position x' ) and intercept, added in quadrature, where the uncertainty in the
intercept is given by the relation below.
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We will use these abstract relations to create specific equations in the physical variables of
our experiment. The correspondence is x à  Qinj, y à  50% pt.,m à  Gain, b à  Offset, and b' à
<50% pt.>.  Thus we have these two equations:
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We have as well an intermediate one,
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By imposing fractional errors, fG and foff, on the measured values of gain and offset, we
bound also δ(Gain) and δ(Offset).  We construct the following minimum conditions on the
repetition parameters:
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To produce the simplified results above, we have noted that δ(50% pt)i = δ(50% pt) for all values
of i.  This is the statement that the noise in the system is not dependent on the amount of charge
injected, which is true in the regime scanned. It is useful to note that this inequality has the
expected dependence on N and Nevts.  The dependence on n is complicated because our choice of
scan points affects the quality of our fitting parameters.  We note that the dependence on any one
of the three parameters is factorable from the dependence on the other two.

4. Precision in Trim Slope
Our current default is to use the same values for Nevts and ∆V to generate s-curves for

calculating trim slope, but here the scan points represent different trim values rather than different
pulse heights.  This may not be preferable for the following reason.  The trim slope has an error
that follows the same analysis as that for the gain.  The only difference is in the coordinates of the
x-axis, and the locations of the xi.  Because we are not concerned with the intercept in this fit, we
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do not need the level of precision here that we need for the previous calculation.  The minimum
condition for the trim slope is
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5. Analysis of Two Special Cases
There are a couple of interesting special cases to consider which lead to additional inequalities

that we may use to optimize our choice of scan points.

The case in which the same precision is needed on all quantities provides a guideline for
choosing charge injection scan points.  Since we must use sufficient statistics for the above
methods to be sound anyway, we consider the approximation ( ) evtsevts NN ≈− 1 .  In this case, we
combine the constraints from gain offset and noise.  In the case fG = foff, the offset is the
constraining parameter.  If we now substitute the bound provided by the noise, we are left with a
minimum condition in the quantities of the scan points:
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In the second case, we consider a constraint on the trim scan points.  With the restriction that
Nevts and N must have the same values in the trim scans that they have in scans measuring gain
and offset, the condition from the trim slope precision can be manipulated to emphasize the scan
points:
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6. Conclusions
We have established the dependence of the precision of the measured values of noise, gain,

offset, and trim slope on the repetition parameters Nevts, N and n, defined above, using analytic and
Monte Carlo techniques.  We arrive at four minimum conditions in these parameters.

From the noise, we have,
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and from gain and offset we have,
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while the trim slope gives us
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Analysis of the trim slope precision suggests that we may reduce scanning time by using
distinct values for Nevts and N from those used in measuring gain and offset.

For tables of the typical values of quantities discussed herein and sample precision
calculations, see Appendix B.
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Appendix A.
Here we describe the method used to deduce the functional form of δσ.  Through

consideration of related distributions, we expect δσ  = δσ(σ, Nevts, ∆V).  We investigate the form of
the dependence on each of these variables through the method of Monte Carlo simulation.

To generate a sample of simulated data distributed with s-curve shape, we use the Von
Neumann Acceptance-Rejection method [5].  The comparison function used is
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Here, x0 is the Monte Carlo truth 50% point, and σ0 is the Monte Carlo truth transition width.  The
random number generator used is the ROOT TRandom::Rndm() function [6].

To deduce the form of δσ, we make histograms of σ - σ0, where σ is the fitted width of a
simulated s-curve.  The simulated s-curves are fit to the form of a three-parameter complementary
error function.  The histograms of σ - σ0 are fit with a three-parameter Gaussian function.  The
width of such a Gaussian is δσ.

We generate simulated data by separately varying each of the independent variables in δσ.
The data generated is given below (Figures 3, 4, 5).

Figure 3. Results of Monte Carlo simulation.  δσ is plotted as a
function of σ, and fit in the manner described below.
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Figure 4. Results of Monte Carlo simulation.  δσ is plotted as a
function of Nevts, and fit in the manner described below.

Figure 5. Results of Monte Carlo simulation.  δσ is plotted as a
function of ∆V, and fit in the manner described below.

To generate the plots in the figures, we have first fit for the exponent on the independent
variable, and then fit with the exponent held constant to deduce the best value for the scaling
parameter, p0.  As the figures illustrate, the most consistent reasonable value for the scaling
parameter is p0 = 1.

Combining the results from the three independent variables, we arrive at an equation for
δσ:
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Appendix B.
Here are some sample calculations. The values used for the input parameters are currently

the default running values for these parameters.

Noise (σ) ~ mV 5

Voltage Step (∆V) ~ mV 7.5  Scan points ~ fC

n ( # of scan points) 4  2.5

Gain ~ mV/fC 50 3.0

Offset ~ mV 15 3.5

Trim Slope 3 4.0

Nevts 500

The percent statistical errors for various numbers of trigger events are in the tables below.

∆V = 7.5mV (default):
Nevts %δ(Gain) %δ(Offset) %δ(Noise) %δ(Trim Slope)

100 0.823 9.046 12.309 1.345

200 0.582 6.396 8.682 0.951

300 0.475 5.223 7.083 0.776

400 0.411 4.523 6.131 0.672

500 0.368 4.045 5.483 0.601

600 0.336 3.693 5.004 0.549

700 0.311 3.419 4.632 0.508

∆V = 5.0mV:
Nevts %δ(Gain) %δ(Offset) %δ(Noise) %δ(Trim Slope)

100 0.672 5.539 10.050 1.098

200 0.475 3.917 7.089 0.776
300 0.388 3.198 5.783 0.634
400 0.336 2.770 5.006 0.549
500 0.300 2.477 4.477 0.491
600 0.274 2.261 4.086 0.448

700 0.254 2.094 3.782 0.415

∆V = 2.5mV:
Nevts %δ(Gain) %δ(Offset) %δ(Noise) %δ(Trim Slope)

100 0.475 3.917 7.107 0.776

200 0.336 2.770 5.013 0.549
300 0.274 2.261 4.089 0.448
400 0.238 1.958 3.540 0.388
500 0.212 1.752 3.165 0.347
600 0.194 1.599 2.889 0.317

700 0.180 1.480 2.675 0.293

The percent errors in the tables above are given as characteristic only, as they rely upon
values of the respective parameters as given in the table above.
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Appendix C.
We have performed an experimental verification of the formulae given in the body of this

note for the statistical precision in noise, gain and offset.

The plots in Figures 7-12 below compare the theoretical results predicted by our models
with the spread of measured values seen in real data.  In the real data, each measurement was taken
25 times.  Error bars are calculated from statistics and represent 1σ interval.

For the gain and offset, these plots indicate that the theory is consistent with the data.  The
plots for the noise suggest that the theory is valid in the regime where r = ∆V/σ << 1, but that the
default value for ∆V approaches the outside boundary of this regime.  In particular, this is
illustrated in Figure 8, where the relative positions of the data and the model become inverted as r
is increased.  The results in Figure 7, with data taken at r = 1.5 (the default), are also consistent.
Monte Carlo data in this region is given in Figure 6.  The model begins to deviate from the
simulated data when r is increased beyond 1.
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Figure 6. Monte Carlo data showing behavior of δσ as a function of r.
The current default settings have r=1.5.  Available values
below the default are r=1 and r=0.5.

.
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Figure 7. Empirical dependence of δσ on Nev (Measured) plotted with
values predicted by the model (Theory).  Each empirical
data point has 25 contributing measurements.  ∆V=7.5mV
(default).
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Figure 8. Empirical dependence of δσ on ∆V (Measured) plotted with
values predicted by the model (Theory).  Each empirical
data point has 25 contributing measurements. Nev=100.
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Figure 9. Empirical dependence of δ(Gain) on Nev (Measured) plotted
with values predicted by the model (Theory).  Each
empirical data point has 25 contributing measurements.
∆V=7.5mV (default).
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Figure 10. Empirical dependence of δ(Gain) on ∆V (Measured) plotted
with values predicted by the model (Theory).  Each
empirical data point has 25 contributing measurements.
Nev=100.
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Figure 11. Empirical dependence of δ(Offset) on Nev (Measured)
plotted with values predicted by the model (Theory).  Each
empirical data point has 25 contributing measurements.
∆V=7.5mV (default).
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Figure 12. Empirical dependence of δ(Offset) on ∆V (Measured)
plotted with values predicted by the model (Theory).  Each
empirical data point has 25 contributing measurements.
Nev=100.
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